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 Abstract  

Background:  Using  multipollutant  models  to understand combined health effects  of  exposure  to 

multiple  pollutants  is  becoming more  common. However, complex  relationships  between 

pollutants  and differing degrees  of  exposure  error across  pollutants  can make  health effect  

estimates from multipollutant models difficult to interpret.  

Objectives:  To quantify  relationships  between multiple  pollutants  and their associated exposure  

errors  across  metrics  of  exposure, and  use  empirical  values  to evaluate  potential  attenuation of  

coefficients in epidemiologic models.   

Methods:  We  used three  daily exposure  metrics  (central-site  measurements, air quality model  

estimates, population exposure  model  estimates)  for 193  ZIP  codes  in the  Atlanta, Georgia  

metropolitan area, from  1999-2002, for PM2.5  and its  components  (EC, SO4), O3, CO, and NOx,  

to construct  three  types  of  exposure  error:  δspatial  (comparing air quality model  estimates  to 

central-site  measurements), δpopulation  (comparing  population exposure  model  estimates  to air 

quality model  estimates), and δtotal  (comparing population exposure  model  estimates  to central-

site  measurements).  We compared  exposure  metrics  and exposure  errors  within and across  

pollutants, and present  derived attenuation factors  (ratio of  observed to true  coefficient  for 

pollutant of interest) for single and bipollutant model coefficients.     

Results:  Pollutant  concentrations  and  their exposure  errors  were  moderately  to highly correlated  

(typically >  0.5), especially for CO, NOx, and EC (i.e., “local”  pollutants);  correlations  differed  

across  exposure  metrics  and types  of  exposure  error.  Spatial  variability was  evident,  with  

variance  of  exposure  error  for local  pollutants  ranging  from  0.25–0.83  for δspatial  and δtotal.  The  

attenuation of  model  coefficients  in single  and bipollutant  epidemiologic  models  relative  to the  

true value differed across types of exposure error, pollutants, and space.   
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Conclusions: Under a classical exposure error framework, attenuation may be substantial for 

local pollutants due to δspatial and δtotal, with true coefficients reduced by a factor typically < 0.6 

(results vary for δpopulation and regional pollutants). 
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Introduction   

Most epidemiologic studies of the health effects of ambient air pollution have focused on adverse 

effects associated with single pollutants. In reality, humans are simultaneously exposed to a 

complex mixture of pollutants, which can vary both spatially and temporally (Dominici et al. 

2010). Epidemiological analyses that have examined multipollutant health effects have typically 

relied on ambient monitoring data to estimate exposures (Hoffmann et al. 2012; Tolbert et al. 

2007). Measurements from federal or state ambient monitoring networks often lack spatial and 

temporal coverage (Goldman et al. 2010; Sarnat et al. 2010) and do not account for exposures in 

different microenvironments (e.g. in-vehicle and inside the home) where infiltration (Sarnat et al. 

2006; Weisel et al. 2005) and indoor sources (Baxter et al. 2007; Meng et al. 2009) can 

contribute substantially. There is therefore a potential for exposure measurement error that can 

lead to effect attenuation and reduced statistical power when measurements from ambient 

monitors are used as the exposure estimate in an epidemiological study. 

Complex relationships may exist between exposures to various pollutants, and between the 

exposure error associated with each pollutant. The magnitude of the exposure error may differ 

across pollutants (Tolbert et al. 2007). For example, pollutants with primarily local sources [e.g., 

carbon monoxide (CO), nitrogen oxides (NOx), and elemental carbon (EC)] exhibit significant 

spatial heterogeneity (Goldman et al. 2010; Sarnat et al. 2010; Strickland et al. 2013) that may 

not be captured by central-site (CS) ambient monitors. Exposures estimated from ambient 

monitors for these pollutants may be associated with more error than monitor-based estimates for 

pollutants that are more spatially homogeneous [e.g., fine particulate matter (PM2.5), sulfate 

(SO4), and ozone (O3)]. When exposure estimates do not take into account exposure factors such 

as time-location-activity patterns (including time spent indoors) (Monn 2001; Setton et al. 2011), 
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significant indoor sources (e.g., gas stoves contributing to NO2 exposures) (Williams et al. 2012), 

or housing characteristics (e.g., air exchange rate (AER), or pollutant infiltration) (JA Sarnat et al. 

2013), exposure error may be greater. 

Previous studies have predominantly focused on quantifying and accounting for exposure error 

in single-pollutant models (Sarnat et al. 2010; Setton et al. 2011; Strickland et al. 2013). One 

study has focused on a method for analysis of health effects in multipollutant studies that is 

resistant to measurement error (Zeka and Schwartz 2004). Amongst other findings, the study 

found an association between CO and daily mortality where traditional analysis did not, 

suggesting that a high degree of measurement error due to spatial heterogeneity of CO 

concentrations may be contributing to the difference in findings. A second provides alternative 

methods for estimating the effect of two exposures on an outcome, which reduce bias at the cost 

of a small to moderate reduction in power (Schwartz and Coull 2003). 

The objective of this analysis is to examine exposure errors for multiple pollutants and provide 

insights on the potential for bias and attenuation of effect estimates in single and bipollutant 

epidemiological models. We utilize this approach to examine the robustness of the association 

for a pollutant of interest when a second pollutant is controlled for, i.e., to examine the 

attenuation due to measurement errors present in both pollutants. In a previous analysis, 

alternative exposure estimates for ambient-generated PM2.5, EC, SO4, CO, NOx, and O3 were 

developed, and spatiotemporal patterns for each estimate were characterized in comparison to CS 

monitor measurements (Dionisio et al. 2013). The exposure estimates were used in an 

epidemiological study in the Atlanta metropolitan area, using a time-series design to examine the 

association between daily exposure to ambient air pollution and daily emergency department 

(ED) visits for asthma/wheeze during a four year study period (1999-2002) (SE Sarnat et al. 
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2013). Using a modified set of the previously generated exposure estimates, we examined the 

exposure error and between-pollutant relationships, and quantified potential attenuation of model 

coefficients in single and bi-pollutant models at the ZIP code-level for ambient-generated PM2.5, 

EC, SO4, CO, NOx, and O3 in Atlanta, Georgia. 

Methods   

Estimates of exposure  

Three estimates of daily exposure to ambient PM2.5, EC, SO4, CO, NOx, and O3 were derived for 

193 ZIP codes in the 20 county Atlanta, Georgia metropolitan area, for use in an epidemiologic 

analysis of cardiovascular and respiratory outcomes based on data from ED visits. Each metric 

builds on previous metrics, incorporating the coarser measurements and model estimates, and 

becoming increasingly more finely resolved. The three estimation approaches, or “metrics,” for 

exposure to ambient pollution include: 

1) CS: central-site measurements 

2) AQ: hybrid of statistical model for regional background and dispersion model for the 

local contribution to ambient air quality 

3) PE: stochastic population exposure model 

The AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory 

Model) dispersion model (version 09292), is used for the local contribution to the AQ metric, 

and the U.S. EPA’s Stochastic Human Exposure and Dose Simulation (SHEDS) model (Burke et 

al. 2001) is used for the PE metric. The contribution from indoor sources is not included in any 

of the approaches, due to the desire to associate exposure to ambient pollution with the health 

outcome. All three approaches estimate exposures to ambient pollution at each ZIP code centroid 
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in the study area. Daily estimates (8-hr maximum for O3, 24-hr average for other pollutants) 

from 1999-2002 are generated for the three exposure estimation approaches. 

 Central-site measurements 

CS measurements for each pollutant are from the Southeastern Aerosol Research 

Characterization network, the Assessment of Spatial Aerosol Composition in Atlanta network, 

and the U.S. Environmental Protection Agency’s (EPA’s) Air Quality System monitoring 

network (see Supplemental Material, Figure S1). Details regarding measurement methods, 

imputations for filling in missing data, and previous work using these monitors to characterize 

background air pollution levels are provided in previous publications (Dionisio et al. 2013; 

Metzger et al. 2004; Tolbert et al. 2000). Daily 24-hr average concentrations of PM2.5, EC, and 

SO4 were taken directly from monitor measurements. Hourly concentrations for CO and NOx 

were aggregated to 24-hr averages, and hourly concentrations for O3 were aggregated to daily 8-

hr maximum concentrations. 

 Air quality model estimates 

Air quality model estimates were obtained by combining local- and regional-scale model results 

(based on CS measurements) to account for all major atmospheric processes, including local 

contributions (driven by local-scale variation in pollutant emissions and meteorology) and 

regional contributions (background levels associated with large-scale synoptic patterns). The 

sum of the modeled regional background contribution and the local contribution is computed 

hourly to obtain total modeled ambient air concentrations at each ZIP code centroid for each 

pollutant being studied. To obtain estimates of the regional background contribution, we 

modified an approach developed to provide population-weighted daily averages of ambient 

pollution concentrations (Ivy et al. 2008) to provide spatially resolved hourly estimates of 
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regional background pollution by removing local source impacts modeled by hour-of-day and 

day-of-week. Local-scale pollutant contributions for PM2.5, EC, SO4, CO, and NOx at each ZIP 

code centroid were modeled using the AERMOD dispersion model version 09292 (Cimorelli et 

al. 2005), which simulates concentrations of pollutants directly emitted into the atmosphere. 

Because O3 is formed by photochemical processes and has no direct emissions, O3 

concentrations were not modeled with AERMOD. Similarly, the SO4 concentrations estimated 

from AERMOD are from direct vehicle exhaust emissions, and do not include the secondary SO4 

contribution due to photochemical transformations in the atmosphere. Further details on 

methodology and modeling of the regional contribution, local-scale contribution, and 

computation of the AQ metric estimates can be found in (Dionisio et al. 2013).    

 Population exposure model estimates 

We used the SHEDS model (Burke et al. 2001) to derive PE model estimates of daily population 

exposures to ambient pollution at each ZIP code centroid. SHEDS is a stochastic population 

exposure model that uses a probabilistic approach to estimate personal exposures for simulated 

individuals of a defined population based on ambient concentrations, distributions of residential 

AERs and particle infiltration parameters (i.e., penetration factors and deposition rates), and time 

spent in various microenvironments (e.g., home, office, school, vehicle) from a large database of 

human activity diaries. Key inputs to the model are the AQ metric estimates described above, 

time-location-activity data from the U.S. EPA’s Consolidated Human Activity Database 

(McCurdy et al. 2000), spatially varying local air exchange rates (AERs) (JA Sarnat et al. 2013), 

and census tract-level home-to-work commuting data (U.S. Department of Transportation 

Bureau of Transportation Statistics 2000; U.S. EPA 2012). Penetration and decay parameters 

used in the model are specific to each pollutant, but do not vary spatially or temporally (see 
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Supplemental Material, Tables S1 and S2). To derive model estimates for exposures to ambient 

pollution, consistent with the CS and AQ metrics, we excluded contributions from indoor source 

emissions for this analysis. For additional details, see Supplemental Material, Population 

exposure metric. 

Statistical analyses  

ZIP code-level summary statistics for each exposure metric, for each pollutant, were computed. 

Statistics include the annual mean normalized pollutant concentrations, and the variance across 

days of the normalized pollutant concentrations, for each exposure metric. To allow for 

comparisons across pollutants, ZIP code-specific pollutant concentrations for each exposure 

metric were normalized by dividing the daily pollutant concentration by the annual average CS 

measurement for that pollutant. The magnitude and spatial variability of normalized pollutant 

concentrations were then compared across pollutants and exposure metrics. 

One standard approach for examining the health effects of multiple pollutants is to include each 

pollutant as an independent risk factor simultaneously, in a single epidemiologic model (Bell et 

al. 2007; Tolbert et al. 2007). To assess the impacts of exposure error on health risk estimates in 

a multipollutant model, the correlation between the exposure estimates, the degree of exposure 

error for each pollutant, and the correlation of exposure errors between pollutants must all be 

considered (Zeger et al. 2000; Zidek et al. 1996). 

In this analysis, exposure error, δ, is calculated as the difference between two exposure metrics. 

Three types of exposure error (δspatial, δpopulation, and δtotal) are presented. The exposure error due 

to a lack of spatial refinement in the exposure estimate is represented by δspatial = AQ – CS, as our 

air quality models add spatial variability to the AQ metric compared to CS measurements (CS 
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measurements lack spatial variability as the same CS measurement was used to represent 

exposure in each ZIP code). Exposure error introduced when human exposure factors are not 

included in an exposure estimate is represented by δpopulation = PE – AQ. Our PE metric includes 

variability due to human exposure factors such as time-location-activity patterns of individuals, 

commuting patterns, and infiltration of ambient pollutants indoors. A third type of exposure 

error, δtotal = PE – CS, represents the combined exposure error when both spatial variability and 

human exposure factors are not accounted for. Note that δtotal does not represent all potential 

sources of exposure error that may be present in a study, but instead represents the total exposure 

error that we are able to assess in this analysis. As with the pollutant concentrations, daily, ZIP 

code-specific estimates of exposure error are normalized by dividing by the annual average CS 

measurement for that pollutant, to allow for comparison across pollutants and types of exposure 

error. The variance calculated across days of the normalized exposure error is also presented, to 

aid in estimating the degree of bias and attenuation of model coefficients. 

The between-pollutant Pearson correlations over time for each exposure estimation approach, 

and for each type of exposure error, are calculated, to provide information on the collinearity of 

exposure estimates and exposure error which must be accounted for in a multipollutant model. 

Correlations are calculated for each ZIP code individually, so that the range of correlations can 

be compared across the study domain. 

Estimates of the level of attenuation of model coefficients for single- and bipollutant models are 

presented, to aid in the interpretation of future epidemiologic models including two or more 

pollutants. The attenuation factor (λ) for a classical error, single pollutant framework is 

calculated as: 
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 λ  = 1/{1 + [var(δ) /  var(xfine)]}   [1]  

 βobserved  = λ  x βtrue  [2]  

where  δ  = exposure  error, xfine  =  the  exposure  metric  with the  greater degree  of  refinement  (i.e.,  

increased spatial  resolution, or inclusion of  weighting by population factors), var(xfine) = the  

variance  across  days  of  xfine, and β  = model  coefficients. We  assume  that  the  related 

epidemiologic  analysis  fits  a  time-series  model  separately for each ZIP  code, thus  β  represents  

the  association between the  health outcome  and the  daily pollutant  exposure. For simplicity, we  

present  the attenuation factor  λ  x1 
 for  pollutant  x1  in a bipollutant  model,  assuming  pollutant  x2  

has no effect ( β  x2 
 = 0), given by the diagonal elements of :  

  =  S  (S + V)-1 λ x1  
 [3]  

 βobserved,x =  λ  x x βtrue,x1 1  1  
[4]  

where  S  = covariance  of  the  exposure  metrics  with the  greater degree  of  refinement  for x1  and x2, 

and V  = covariance  of  the  exposure  errors  for x1  and x2.   For the  single  and bipollutant  models, 

an attenuation factor of  λ  = 1 indicates  no attenuation  (i.e., βobserved  = βtrue) and λ  = 0 (i.e., βobserved  

= 0) indicates  null  results.  An attenuation factor of  λ  > 1 indicates  bias  away from  the  null, and λ  

<  0 indicates  that  the  estimated coefficient  will  be  in the  opposite  direction of  the  true  effect. As 

an example, the  λ  associated with δspatial  in a  single  pollutant  model  reflects  the  attenuation of  

model  coefficients  due  to error from  incomplete  characterization of  the  spatial  variation in the  

concentration of the pollutant in question.  

All statistical  analyses  were  completed in R version 2.15.1 (R Foundation for Statistical  

Computing, Vienna, Austria). All mapping was  done in ArcGIS 10 (Esri, Redlands, CA).   
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Results  

This study builds on previous work, where single-pollutant epidemiologic models were used to 

estimate the association between daily counts of ZIP code-level ED visits and ZIP code-specific 

exposures using the three metrics (JA Sarnat et al. 2013; SE Sarnat et al. 2013). Related analyses 

also showed that the temporal variation in the AQ measure was not always more variable than 

temporal variation in the CS metric (Dionisio et al. 2013). The goal of this analysis was to 

examine exposure error and between-pollutant relationships, and how these differ by pollutant 

pair and exposure metric. Using the empirical covariance structures allowed us to assess 

potential attenuation of model coefficients in bipollutant epidemiologic models. 

Summary statistics for ex posure metrics  

Figure 1a presents the boxplots of ZIP code-specific normalized exposure metrics averaged 

across the entire study period (see Supplemental Material, Figure S2a, for an expanded version 

that shows the full distributions for each metric). Distributions of pollutant concentrations differ 

by exposure metric, with the PE estimates being consistently equal to (CO) or lower than (NOx, 

EC, PM2.5, SO4, O3) AQ estimates, due to the penetration and decay parameters used in the 

SHEDS model (Supplemental Material, Tables S1 and S2). There was no spatial variability for 

the CS metric, since the same CS measurement was used for all ZIP codes. However, there was 

considerable spatial variability [i.e., variation among the 193 ZIP code-specific estimates, as 

indicated in the boxplot figures by a larger interquartile range (IQR, represented by the upper and 

lower bounds of each box), and a larger range from the 5th to 95th percentiles (the lower and 

upper whiskers of each boxplot, respectively)] when AQ or PE modeling was used. For all 

pollutants except CO, PE estimates exhibited a lower degree of spatial variability than AQ 

estimates. Local pollutants (CO, NOx, EC) had relatively more spatial variability in their AQ and 
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PE metrics than regional pollutants (PM2.5, SO4, O3), which was expected due to the variation of 

local source emissions such as traffic at the ZIP code level. 

Between-pollutant correlations of ex posure metrics  

Boxplots of pairwise Pearson correlation coefficients of daily, ZIP code-specific exposure 

metrics for local-local and regional-regional pollutant pairs are presented in Figure 1b. All local-

local and regional-regional pollutant pairs showed moderate to strong positive correlations for 

each metric, however correlations for regional-regional pollutant pairs tended to be lower. For 

the regional-regional pollutant pairs, the median correlation for each pair was consistent across 

the three exposure metrics. In contrast, for each local-local pollutant pair, the correlation 

coefficient for CS measurements was lower than the median correlation for the AQ and PE 

metrics. Correlations of local-regional pollutant pairs were more varied and typically weaker 

than local-local and regional-regional pollutant pair correlations, with the exception of 

correlations of CO, NOx, and EC with PM2.5 (Supplemental Material, Figure S2b). 

Spatial variability (described by the width of the boxplot) was present to varying degrees for 

correlations within the AQ and PE metrics, with more spatial variability present for local-local 

pollutant correlations than regional-regional pollutant correlations, especially for the CO-EC and 

NOx-EC pairs (Figure 1b). The degree of spatial variability for regional-regional pollutant pairs 

was similar for both the AQ and PE metrics. There was no spatial variability present for the 

between-pollutant correlations of exposure for the CS metric, since the same CS measurement 

was used for each ZIP code. 
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Summary statistics for ex posure error   

Figure 2a compares the magnitude and spatial variability of the three types of normalized 

exposure error (δspatial, δpopulation, and δtotal) across pollutants (see Supplemental Material, Figure 

S3a for the full distribution). The distribution of exposure error across ZIP codes was mostly 

negative (indicating the exposure metric with a greater degree of refinement had a lower 

magnitude), though exposure errors were positive for a small number of ZIP codes. The 

magnitude of the exposure error varied by type of error, with the absolute value of exposure error 

greater for δpopulation and δtotal than for δspatial for regional pollutants, and mixed results for local 

pollutants. With δspatial near zero for the regional pollutants (median absolute value of δspatial 

across ZIP codes less than 0.12, indicating similar magnitude for CS measurements and AQ 

estimates), their total exposure error (δtotal) consisted mostly of exposure error due to human 

exposure factors (δpopulation, indicating greater differences in magnitude for AQ estimates relative 

to PE estimates.) 

To assess the potential for spatially differential exposure error, we compared the spatial 

variability of exposure errors across ZIP codes. With the exception of δpopulation for CO, the 

spatial variability of exposure error was greater for local pollutants than regional pollutants 

(Figures 2a, 2c). For local pollutants, spatial variability was present to varying degrees across all 

types of error [smallest range of 5th to 95th percentiles of normalized exposure error -0.64 

to -0.13 (EC, δpopulation), largest range -0.85 to 1.73 (NOx, δspatial)], with the exception of δpopulation 

for CO, which was near zero due to use of a penetration factor of 1 (i.e., assuming free flow of 

outdoor and indoor air) in the SHEDS model for CO (Supplemental Material, Table S2). In 

contrast, regional pollutants exhibited little spatial variability across types of exposure error and 

the degree of spatial variability was consistent within a pollutant, across types of error. 
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Between-pollutant correlations of exposure error  

The collinearity of exposure error was examined based on Pearson correlations between daily 

exposure error for local-local and regional-regional pollutant pairs (Figure 2b, see Supplemental 

Material, Figure S3b, for local-regional pairs). The correlation of exposure error was highly 

dependent on both pollutant pair and type of exposure error. Between-pollutant correlations of 

exposure error were mostly positive, though there were some ZIP codes with negative 

correlations, especially for CO. Correlation of exposure error due to a lack of spatial refinement 

(δspatial) was moderate to strong for local-local pollutant pairs (median correlation over all ZIP 

codes ranging from 0.65 to 0.76), and relatively weak for regional-regional pollutant pairs 

(median correlation ranging from 0.03 to 0.21). Correlation for δpopulation showed a near opposite 

trend, with weak, negative correlations of δpopulation for CO-NOx and CO-EC (-0.13 and -0.19 

respectively), and moderate to strong positive correlations of δpopulation for NOx-EC (0.85) and the 

regional-regional pollutant pairs (ranging from 0.52 to 0.77). The magnitude of the correlation of 

total exposure error (δtotal) between local-local and regional-regional pollutant pairs varied, with 

median correlations of δtotal across ZIP codes ranging from 0.35 to 0.72 (Table 1, Figure 2b). 

Local-local and regional-regional pollutant pairs showed a moderate degree of spatial variability 

in the correlation of δspatial (Figure 2b). The patterns of spatial variability of the correlation of 

δpopulation are more varied, with local-local pollutant pairs showing a larger degree of spatial 

variability compared to regional-regional pollutant pairs (5th to 95th percentile for correlation 

coefficients of 0.56 to 0.93 for NOx-EC, -0.42 to 0.63 for CO-NOx, and -0.46 to 0.59 for CO-EC). 

Though there was a large range of correlations across ZIP codes for δpopulation for CO-NOx and 

CO-EC in particular, the bulk of the correlations across the study area were relatively weak (25th 

to 75th percentile for correlation coefficients of -0.27 to 0.21 for CO-NOx and -0.37 to 0.17 for 
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CO-EC. As  reflected in comparisons  of  δspatial  and δpopulation, we  see  greater spatial  variability in 

the  correlation of  δtotal  for the  local-local  pollutant  pairs, and very little  spatial  variability in the  

correlation of  δtotal  for the regional-regional pairs.    

Variance of exposure error  

For regional pollutants (PM2.5, SO4, and O3), variance across days of the normalized exposure 

error had very little spatial variability (i.e., boxplots of the variance of normalized exposure error 

are narrow), and was less than 0.20 for any type of error in any ZIP code (Figure 3a). In 

comparison, with the exception of δpopulation for CO, variance of the exposure error, and spatial 

variability of the variance, was present for local pollutants (Figure 3, see Supplemental Material, 

Figure S4, for the full distribution). For the local pollutants, the magnitude and spatial variability 

of the variance of normalized error differed depending on pollutant and type of error, with the 

variance of δspatial and δpopulation for NOx having the largest range of spatial variability, while the 

variance of exposure error for EC exhibited more modest spatial variability. 

Attenuation of model coefficients  

By compiling empirically determined parameters related to the between-pollutant relationships 

and their associated exposure error (Table 1), and utilizing Equation 3, we were able to quantify 

the potential attenuation of model coefficients in a bipollutant model. Table 1 presents the 

median values across all ZIP codes of the correlations over time and variances across days for 

pollutant concentrations and their associated exposure errors. The individual ZIP code-specific 

values of these parameters (Figures 1b, 2b, and 3a, for full range of parameter values across all 

ZIP codes see Supplemental Material, Figures S2a, S3b, and S4) were used to calculate 

attenuation factors presented in Figure 4. 

17  



 
 

        

        

        

            

  

       

       

            

            

         

      

      

       

         

 

         

        

       

       

       

           

 

Figure 4 presents the potential attenuation factors for single and bipollutant epidemiologic 

models, based on empirical estimates of the relationships between exposure metrics and their 

exposure error. Attenuation factors presented for bipollutant models assume that one pollutant 

has a true effect on the health outcome, while the other pollutant has no effect. For δspatial, we see 

a clear distinction between local and regional pollutants, with more attenuation (typically λ < 0.6) 

for both single and bipollutant models of local pollutants, and less attenuation for regional 

pollutants (typically λ > 0.6) (Figure 4a; noting that λ = 1 indicates no attenuation (i.e., βobserved = 

βtrue), λ = 0 indicates null results, λ > 1 indicates bias away from the null, and λ < 0 indicates that 

the estimated coefficient will be in the opposite direction of the true effect). Addition of a co-

pollutant appears to increase attenuation. Results for δpopulation and δtotal are more varied, with 

attenuation factors depending on the pollutant and co-pollutant (Figures 4b, 4c). For δspatial and 

δtotal, we see notable spatial variability in the attenuation factors (evidenced by wider boxplots) 

for local pollutants (except for δtotal for NOx). For δpopulation, and regional pollutants for δspatial and 

δtotal, the degree of spatial variability depends on the type of exposure error, pollutant, and co-

pollutants. 

For comparison, we present the attenuation factors for a bipollutant model with one local (NOx), 

and one regional (PM2.5) pollutant (Figure 4d), which shows significant differences in the 

attenuation factor across types of exposure error, but smaller differences between single and 

bipollutant models. Attenuation factors for bipollutant models for all local-regional pollutant 

pairs are presented in Supplemental Material, Figure S5. Results occasionally showed bias away 

from the null (λ > 1) for some bipollutant combinations because of the strong correlations in both 

pollutant concentrations and exposure errors. 
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Discussion  

Improved understanding of the degree of exposure error among pollutants and their dependent 

structure is needed to properly interpret results from epidemiologic models including multiple 

pollutants. Through examination of three different exposure metrics, and three types of 

associated exposure measurement errors, we were able to empirically estimate bipollutant 

relationships and the potential for attenuation of model coefficients in related bipollutant 

epidemiologic models. For bipollutant models with local-local pollutant pairs, δspatial and δtotal 

were likely to introduce attenuation of model coefficients due to high correlations between local 

pollutant concentrations (corr(x1, x2) > 0.80 for all local-local pollutant pairs), unequal and non-

zero variance of the exposure error for each pollutant (0.25 < var(δ) < 0.83), and moderate to 

high correlation of the exposure error for each pollutant pair (corr(δ1, δ2) > 0.52 excepting CO-

NOx for δtotal). For regional-regional pollutant pairs, attenuation of model coefficients was likely 

to be minimal, due to relatively low variance of the exposure error (var(δ) < 0.16 for all regional 

pollutants and types of exposure error). The empirical quantification of the above parameters 

resulted in a predicted attenuation factor due to δspatial that was typically < 0.6 for single and 

bipollutant models of local pollutants, with less attenuation for regional pollutant models 

(typically λ > 0.6), and more varied results for δpopulation and δtotal. 

The mean over all ZIP codes of AQ metric estimates incorporating both regional background and 

local pollution contributions are similar in magnitude to CS measurements, though particularly 

for local pollutants AQ metric estimates can exhibit spatial variability depending on local traffic 

patterns within the ZIP code. With the exception of CO, PE metric estimates for each pollutant 

are lower than their corresponding CS measurement, due to infiltration and decay parameters 

incorporated into the SHEDS human exposure model, and the inclusion of time-activity data 
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based on diaries which indicated that individuals spend the majority of their time indoors. PE 

metric estimates for CO are similar to AQ metric estimates, as the penetration parameter for CO 

was set to 1 (i.e., assuming full penetration of CO from the outdoor to the indoor environment). 

Pollutant contributions from indoor sources were not included in this study, thus the PE metric 

represents indoor and outdoor exposures to ambient pollution originating outdoors only. 

Air quality models introduce spatial variability into AQ exposure estimates that is not captured 

when a single CS measurement is used for all ZIP codes in a study area. Spatial variability was 

much greater for pollutants with predominantly local sources (CO, NOx, EC) compared to 

pollutants dominated by regional source contributions (PM2.5, SO4, O3). This increase in spatial 

variability for local pollutants was mainly due to differences in traffic volume and patterns 

among different ZIP codes. Between-pollutant correlations were strong for local-local pollutant 

pairs, and moderate to strong for regional-regional pairs, reflecting the common emissions 

sources contributing to pollutant concentrations within each pair. 

As expected, total exposure error (δtotal) for regional pollutants was made up mostly of exposure 

error due to human exposure factors (e.g., time-activity patterns, AER in the home), with a small 

contribution from unmeasured spatial variability. In contrast, for the local pollutants NOx and EC, 

there were substantial exposure error contributions from both human exposure factors and spatial 

heterogeneity in ambient concentrations. For CO, we see a near zero contribution from δpopulation 

(due to full penetration of CO indoors). 

Potential impact on epidemiologic model coefficients  

Here we discuss the impact of attenuation on epidemiologic model coefficients in a 

multipollutant model. In a multipollutant model, the absolute magnitude of this bias will depend 
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on the variance of the exposure error, the correlation between exposure estimates, and the 

correlation between exposure errors. 

This analysis builds upon the hypothetical simulation presented in Zeger et al. (2000) of 

predicted bias in regression coefficients in a bipollutant epidemiologic model. In a bipollutant 

model, we may not be concerned with bias if two regional pollutants are included, due to the 

near-zero (δspatial) and very low (δpopulation and δtotal) variance of exposure error for regional 

pollutants (Figure 3a, Table 1). However in a bipollutant model including two local pollutants, 

there is the potential for bias and attenuation of model coefficients due to a higher degree of 

variance of exposure error. The effect in bipollutant models including one local and one regional 

pollutant will vary, depending on the pollutant pair. In addition, empirically determined 

attenuation factors for single- and bipollutant models show that the potential for attenuation in 

the estimated effects can be quite substantial for many pollutants and exposure error types, in 

particular for local pollutants (with the exception of δpopulation for CO) (Figure 4). 

In addition to the potential for bias, results presented here show that spatial variability is present 

in the exposure error for local pollutants, and in the between-pollutant correlations of exposure 

error for local-local pollutant pairs. Figure 3b visually displays how the variance of spatial 

exposure error for NOx changes across the study domain, with variance of spatial exposure error 

highest in the urban core (within and immediately surrounding the blue circular line indicating a 

major road), lowest in the central ring of our study domain (ring surrounding the urban core), and 

increasing slightly again as you extend to the western boundary of the study domain. These 

results highlight the importance of characterizing intra-urban variations in exposure to avoid 

spatially varying differential exposure error. This is a particular concern when examining effect 

modification of air pollution health risks obtained without spatially resolved exposure estimates. 
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For example, observed effect modification by ZIP code-level socioeconomic measures (SE 

Sarnat et al. 2013), which exhibit strong spatial patterns, may be due at least in part to varying 

degrees of attenuation bias from spatially differential exposure error. 

Finally, when multiple pollutants are included simultaneously in a model of associations with 

health outcomes, bias away from the null may also occur. “Effect transfer” (Zidek et al. 1996) 

occurs when two correlated pollutants are measured with differential exposure error, and the 

effect of the pollutant measured with more error is transferred to the pollutant measured with less 

error. In this case a pollutant without an effect on an outcome may become associated with it. 

Limitations  

Limitations of this study include uncertainties in the more refined exposure metric estimates 

(including that small area variations in pollutant concentrations may not be resolved due to 

sparsely distributed measurements used as inputs), and the exclusion of the influence from 

indoor sources. While it is commonplace to use exposure to ambient sources as a proxy for an 

individual’s total exposure in an epidemiologic study, the inclusion of indoor sources would 

further enhance study findings. 

Results presented here may be generally applicable to study areas with similar source 

contributions (e.g. local sources predominantly traffic related) and housing characteristics (e.g., 

low AERs). For any study area, methods and models presented here may be applied if 

appropriate input data sets are used. With the exception of the locally derived AERs, all Atlanta-

specific input data sets (e.g., central site pollutant measurements, traffic patterns, local emissions) 

were extracted from larger, publically available databases maintained by federal and state 

agencies, thus similar input data sets for any study area could be compiled. If local AERs were 
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not available, estimates could be made based on published distributions of AERs from various 

parts of the country. 

Though the magnitudes of effects may differ, we expect that general conclusions from our 

analysis will be applicable to other geographic areas. For example, most study regions will have 

some pollutant concentrations dominated by regional sources which are likely to remain spatially 

homogeneous, and some pollutant concentrations dominated by local sources which are likely to 

be spatially heterogeneous within the study area. Thus we believe that our conclusions about the 

spatial variability of exposure error being present, and the general likelihood of bias due to 

measurement error for certain pollutants are likely to apply across studies. 

In calculating the attenuation factor, we assumed a classical exposure measurement error 

framework. We recognize this is a strong assumption, but feel it is more appropriate than 

assuming a Berkson error framework because the CS does not necessarily represent “average” 

exposure for any ZIP code on any given day. Since exposure measurement error is likely to 

contain both classical and Berkson type errors, depending on the pollutants and study design, the 

assumption of a solely classical error framework implies limited applicability. Moreover, our 

assessment of attenuation assumes the effect estimate is not subject to residual confounding, the 

association between pollutant concentration and the health outcome is linear, and there is no 

effect modification between the pollutant association in a bipollutant model. Further, we have 

implicitly assumed that the only bias present is additive (current analysis does not consider 

multiplicative bias); this should not impact the regression slope. Lastly, though empirical 

covariance structures and exposure errors have been used to quantify potential attenuation in 

bipollutant models (assuming only one pollutant has an effect on the health outcome), this 

analysis does not address the potential for effect transfer in a bipollutant model when both 
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pollutants have an effect on the health outcome. A simulation study including the covariance 

structures of data presented here is warranted to quantify the effect on model coefficients in a 

multipollutant model. 

In addition to the role of exposure error, additional factors must be considered as researchers 

further investigate epidemiologic analyses including multiple pollutants. These include the 

possibility of non-linear relationships of the various pollutants with the health outcome, 

interaction or synergism amongst pollutants included in a single epidemiologic model, and the 

possibility of the high correlation we have seen amongst pollutants leading to one pollutant 

appearing to be associated with the health outcome in an epidemiologic model when a correlated 

pollutant is the true causal association. A future simulation study that examines the applicability 

of the classical exposure measurement error framework and the degree of effect attenuation and 

transfer is warranted. 

Conclusions  

This study is one of the first to quantify the effects of correlated exposure measurement error in 

bipollutant models (Chang et al. 2011). To the authors’ knowledge, this is the first to look in 

detail at the effects of spatial variation using dispersion models and stochastic personal exposure 

simulators in a multipollutant context. We have used empirical relationships to show the 

potential for bias, particularly effect attenuation, in epidemiologic model coefficients for 

bipollutant models, particularly for local pollutants (CO, NOx, EC), due to the presence of 

variance in the exposure error, and correlation between pollutants and their errors. Further, we 

have seen evidence of the potential for spatially varying attenuation and bias due to the spatial 

variability present in these parameters on the ZIP code-level. As researchers move towards 
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multipollutant approaches, we must recognize the potential effects on model coefficients 

depending on the relationships that exist between pollutants and their error. 
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Table 1.  Parameters impacting attenuation and bias in bivariate pollutant models of pairs of local pollutants (CO, NOx, EC) or pairs of  

regional pollutants (PM2.5, SO4, O3)a   

Parameter CO-NOx CO-EC NOx-EC PM2.5-SO4 PM2.5-O3 SO4-O3 

AQ Corr(x1,x2) 0.96 0.86 0.88 0.76 0.52 0.62 

PE Corr(x1,x2) 0.86 0.84 0.80 0.76 0.49 0.60 

δspatial 

Var(δ1)b 0.25 0.25 0.83 0.04 0.04 0.05 

Var(δ2)b 0.83 0.30 0.30 0.05 0.02 0.02 

Corr(δ1, δ2) 0.73 0.65 0.76 0.21 0.03 0.11 

δpopulation 

Var(δ1)b 0.00 0.00 0.32 0.09 0.09 0.10 

Var(δ2)b 0.32 0.05 0.05 0.10 0.11 0.11 

Corr(δ1, δ2) -0.13 0.85 0.85 0.77 0.52 0.62 

δtotal 

Var(δ1)b 0.25 0.80 0.80 0.12 0.12 0.16 

Var(δ2)b 0.80 0.33 0.33 0.16 0.16 0.16 

Corr(δ1, δ2) 0.35 0.72 0.72 0.70 0.41 0.57 

aAll values presented are median across all ZIP codes. The first pollutant indicated in each pair corresponds to x1, the second to x2. 
bVar(δ) represents variance of normalized exposure error. 
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Figure  Legends  

Figure 1.  Relationships between three exposure metrics.  For each box, n=193, the bottom and 

top of the box represent 25th  and 75th  percentiles, the band near the middle of the box is the  

median, and the ends of the whiskers are the 5th  and 95th  percentiles.  

Normalized exposure estimates from three methods. Note figure has been zoomed in for clarity. 

Supplemental Material, Figure S2a includes full extent of data and outliers.   

Between-pollutant correlations of exposure for local-local and regional-regional pollutant pairs .  

Supplemental Material, Figure S2b, presents local-regional pollutant pairs.   

Figure 2,  Relationships between three types of  exposure error. For each box, n=193, the bottom    

and top of the box represent 25th  and 75th  percentiles, the band near the middle of the box is the  

median, and the ends of the whiskers are the 5th  and 95th  percentiles.  

Normalized exposure error. Note figure has been zoomed in for clarity. Supplemental Material,  

Figure S3a, includes full extent of data and outliers.   (δspatial  = AQ – CS  ; δpopulation  = PE –   AQ; δtotal  

= PE – CS)    

Between-pollutant correlations of  exposure error for local-local and regional-regional pollutant    

pairs. Supplemental Material, Figure S3b, presents local-regional pollutant pairs.    

δspatial  for NOx. Colored regions represent ZIP codes in the study area, blue and brown lines  

indicate major roads. Legend is grouped by percentile, where 5% = -0.85; 25% = -0.66; 50% = -

0.18; 75% = 0.63; and 95% = 1.73.  
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Figure 3.  Variance of  exposure error. For each box, n=193, the bottom and top of the box   

represent 25th  and 75th  percentiles, the band near the middle of the box is the median, and the  

ends of the whiskers are the 5th  and 95th  percentiles.  

Variance of normalized exposure error. Note figure has been zoomed in for clarity. Supplemental   

Material, Figure S4 includes full extent of data and outliers.   (δspatial  = AQ – CS  ; δpopulation  = PE –   

AQ; δtotal  = PE – CS)    

Variance of  δspatial  for NOx. Colored regions represent ZIP codes in the study area, blue and 

brown lines indicate major roads. Legend is grouped by percentile, where 5% = 0.58; 25% =  

0.72; 50% = 0.83; 75% = 1.14; and 95% = 4.14.  

Figure 4.  Attenuation of model coefficients in a classical error, single pollutant framework, and 

in bipollutant models, assuming one pollutant has an ef fect, and one pollutant has no effect. For  

each box, n=193, the bottom and top of the box represent the 25th  and 75th  percentiles, the band 

near the middle of the box is the median, and the ends of the whiskers are the 5th  and 95th  

percentiles.  

a) δspatial for local-local and regional-regional pollutant pairs. 

b) δpopulation for local-local and regional-regional pollutant pairs. 

c) δtotal for local-local and regional-regional pollutant pairs. 

d) δspatial, δpopulation, and δtotal for a local-regional pollutant example. 

Supplemental Material, Figure S5, presents all local-regional pollutant pairs. Solid boxplots are 

attenuation factors for single pollutant models, dashed boxplots are attenuation factors for 

bipollutant models. The first row of x-axis labels indicate the pollutant effect being considered 
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(e.g., “CO”). The second row of x-axis labels indicates the relevant model and the presence or 

absence of co-pollutants (e.g., “CO, CO+NOx, CO+EC”). For example, for the set of 3 boxplots 

representing attenuation factors for CO, the 1st boxplot is the set of attenuation factors for CO in 

a single pollutant model, the 2nd boxplot is the attenuation factors for CO in a bipollutant model 

with NOx, assuming NOx has no effect, and the 3rd boxplot is the attenuation factors for CO in a 

bipollutant model with EC, assuming EC has no effect. λ = 1 indicates no attenuation, λ = 0 

indicates null results. 
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